

CONCEPTS NREC

Integrated Turbopump Thermo-Mechanical Design and Analysis Tools

September 12, 2001

Mike Platt

Summary

- Steady and transient thermo-mechanical effects drive life, reliability, and cost
- Design cycle needs upfront consideration of:
 - fits, clearance, preload
 - cooling requirements
 - stress levels, LCF limits, HCF margin
- Data synthesis is needed from component design tools

Concepts NRE

SBIR Tool Development

- Use LNG turbopump design during feasibility study
 - 630 gpm at 29.6 krpm
 - 37 lbm/s

- Utilize existing component analysis tools to drive assembly models
- Integration into collaborative environment, not just interfacing separate tools

Current Design System

- Captures blade and disk stress, vibration, thermals
- Misses radial and axial preload effects, thermal conduction through bore

Current Design System

- Captures blade and disk stress, vibration, thermals
- Misses radial and axial preload effects, seal interaction, bore conduction

Current Design System

- Captures nominal bearing, seal, and shaft design
- Misses radial and axial preload effects

Thermo-Mechanical Design Tools

- Utilize data from component design tools
 - Rotor, shaft, housing geometry
 - Primary flow from pump and turbine
 - Internal cooling flow
 - Bearing, seal, and shaft design

Thermo-Mechanical Design Tools

- Temperature, stress, deflection
- Blade clearance, seal clearance, bearing race interference
- Thrust load, bearing preload
- Rotor clamp loads, shaft torque
- Stress results feed probabilistic models

ANSYS 5.6.2 JUN 21 2001 08:03:11 NODAL SOLUTION STEP=1 SUB =1 TIME=1 (AVG) TEMP RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN = -252SMX = 65.195CE NFOR -252 -216.756 -181.512 -146.268 -111.024 -75.781 -40.537 -5.293 29.951

65.195

ANSYS 5.6.2 JUN 21 2001 16:30:04 NODAL SOLUTION STEP=1 SUB =1 TIME=1 USUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX = .122076SMX = .1220760 .013564 .027128 .040692 .054256 .06782

.054256 .06782 .081384 .094948 .108512 .122076

ANSYS 5.6.2 JUN 21 2001 16:27:47 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SEQV (AVG) PowerGraphics EFACET=1 AVRES=Mat DMX = .122076SMN = 14.536SMX = 1778180 16000 32000 48000 64000 80000 96000 112000 128000 144000

Life & Confidence Goals

Fixed Confidence Level

Fixed Number of Cycles

Mean Stress

Typical Transient Results

Goals for Design Tool Integration

- Collaborative working environment
- Integrate with existing component design and analysis tools
- Direct data sharing, including CAD files
- Extensible to other solvers and applications
- Preserve intellectual property

Integration with CAD Kernel

- Consistent and open data format
- Combine geometry and analytical results
- Direct support for native CAD files

Design Tool Integration

Integration with Parasolid Data

Integration with Design Framework

Conclusions

- Thermo-mechanical analysis tool provides upfront design capability
- Existing component design tools are effectively leveraged
- Dual-use capability will give a broad user base
- Parasolid kernel allows collaboration with a wide applications base

Concepts NRE